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This overview focuses on the (a,a-difluoromethylene)phosphonate mimic of phosphoserine (pCF2Ser) and its
application to the study of kinase-mediated signal transduction—pathways of great interest to drug develop-
ment. The most versatile modes of access to these chemical biological tools are discussed, organized by
method of PCF2-C bond formation. The pCF2-Ser mimic may be site-specifically incorporated into peptides
(SPPS) and proteins (expressed protein ligation). This isopolar, dianionic pSer mimic results in a ‘‘constitutive
phosphorylation’’ phenotype and is seen to support native protein-protein interactions that depend on serine
phosphorylation. Signal transduction pathways studied with this chemical biological approach include the
regulation of p53 tumor suppressor protein activity and of melatonin production. Given these successes,
the future is bright for the use of such ‘‘teflon phospho-amino acid mimics’’ to map kinase-based signaling
pathways.
Introduction
It has long been known that biological macromolecules undergo

kinase-mediated phosphorylation. The reverse step, dephos-

phorylation, is also usually phosphatase-controlled. Perhaps

because the phosphorylation event itself greatly changes the

charge distribution and polarity of the substrate, it is often asso-

ciated with signal transduction/amplification. This is particularly

the case for sequence-specific phosphorylations on the amino

acid side chains of serine, threonine, and tyrosine. The bcr-abl

kinase was the first of several to be successfully targeted in

cancer therapeutic drug development, resulting in FDA approval

of the drug Gleevec (Imatinib) in 2001. As of this writing, no fewer

than eight kinase inhibitors are on the market for cancer chemo-

therapy (Boros and Boros, 2007; Pytel et al., 2009), and some

150 kinase inhibitors are in clinical trials (Savage and Gingrich,

2009). As such, the elucidation of kinase/phosphatase-con-

trolled signal transduction pathways has emerged as one of

the most important front end tasks in the medicinal chemistry

arena.

Bioorganic chemists have long sought to develop functional-

ities that effectively mimic biologically relevant phosphate

esters, yet remain inert to phosphatase cleavage. This research

domain resembles the peptidomimetics field, in that one seeks

to build new organic functional groups that retain key properties

of the native structure, yet resist enzymatic biodegradation.

Interestingly, organically bound fluorine has played an important

role in both endeavors, surely bolstered by polarity afforded by

fluorine in compensating for lost oxygen atoms. For example, flu-

oroalkenes, in which the electronegative fluorine atom replaces

the carbonyl oxygen, can serve as viable peptide isosteres

(Welch, 2008). The strength of C-F bonds (O’Hagan, 2008),

and their ability to impose unique conformational constraints

(Gorres et al., 2008; Nieschalk et al., 1996) are important

elements that support such designs. Moreover, the addition of
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multiple C-F bonds can increase stability to chemical oxidation

(DiMagno et al., 1996) and metabolism, and provide additional

driving force to enhance binding with macromolecular targets,

in aqueous solution (Biffinger et al., 2004).

Dating back to key early reports from the groups of Blackburn

(Blackburn et al., 1981), McKenna (McKenna and Shen, 1981),

and Burton (Burton and Flynn, 1982) on pyrophosphate mimics

in the 1980s, there has emerged an interest in synthesizing

a-fluorinated phosphonates as potentially isopolar analogs

(Blackburn et al., 1985b) of the corresponding phosphate esters.

This has spurred a great effort in methodology development

in this area (Benayoud et al., 1996; Blackburn et al., 1985a;

Blackburn et al., 1994; Blades et al., 1997; Caplan et al., 2000;

Cockerill et al., 2000; Diab et al., 2008; Gautier et al., 2004; Her-

pin et al., 1996; Hikishima et al., 2006; Lopin et al., 2003; Murano

et al., 2005; Nair and Burton, 1997; Ozouf et al., 2004; Pajkert

et al., 2008; Pfund et al., 2005; Pignard et al., 2006; Roe-

schenthaler et al., 2006; Xu et al., 2005; Yokomatsu et al.,

2003). The phosphate mimics program in this laboratory was

initiated around the goal of establishing methods to access fluo-

rinated phosphonate analogs of sugar phosphates (Berkowitz

et al., 2001; Berkowitz et al., 2000a; Berkowitz et al., 1993;

Shen et al., 1994), and continues in this direction, with a particular

interest, of late, in bivalent sugar phosphonates as ligands for the

mannose 6-phosphate-insulin-like growth factor II receptor

(M6P/IGF2R) (Berkowitz et al., 2004; Fei et al., 2008).

Although phosphorylations at threonine (Di Croce and Shie-

khattar, 2008; Kulasekara and Miller, 2007), and certainly tyrosine

(Franco and Tamagnone, 2008; Girault, 2006; Grangeasse et al.,

2007; Nag and Chaudhary, 2009; Roskoski, 2008; Zhang et al.,

2009), are of great importance, this overview focuses on serine

phosphorylation. (For nice complementary discussions from the

groups of Otaka and Ojea, primarily focusing on the chemistry

of other phosphono-AAs, see Fernandez et al., 2006; Otaka
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et al., 2000; and Otaka et al., 2004). More specifically, we will

examine the use of the (a,a-difluoromethylene)phosphonate

functionality to mimic the phosphate monoester form of serine

residues, in proteins that are subject to regulation via serine

phosphorylation. The archetypical example of such a system is

represented by the complex interplay of the enzymes glycogen

phosphorylase (GP; catabolism) and glycogen synthase (GS;

anabolism), cascades associated with glycogen metabolism.

These enzymes are each tightly controlled via kinase/phospha-

tase enzymes that respond to hormonal signals from epinephrine

or insulin. For example, epinephrine binding to its cognate

receptor results in the activation of adenylate cyclase (Sunahara

et al., 1996), and the formation of cAMP, the ‘‘universal second

messenger.’’ This leads to the activation of cAMP-dependent

protein kinase A, which, in turn, activates phosphorylase kinase,

which itself activates glycogen phosphorylase, both activations

occurring via enzymatic phosphorylations at serine residues

(Toole and Cohen, 2007).

It now appears that the principal phosphorylations are at

Ser-14 in GP and at Ser-7 and Ser-640 in GS (Toole and Cohen,

2007). However, the complexity of kinase-phosphatase regula-

tion of this key metabolic branch point is remarkable. For

example, in GS alone, nine serine residues can be phosphory-

lated by regulatory kinases, leading to a theoretical complexity

of 512 combinations of distinct Ser/pSer patterns, each poten-

tially with a different kinetic profile. Fortunately, as a result of

hierarchal phosphorylation, the number of configurations of GS

observed is considerably lower. The group of Jensen has pains-

takingly set about to identify and kinetically characterize the

most important ‘‘phospho-forms’’ of this enzyme (Jensen and

Lai, 2009).

Synthesis of the pCF2-Ser Phosphoserine Mimic
It occurred to us and others that for the study of such signal

transduction pathways, it would be useful to have available

a stable mimic of the phosphorylated form of the enzyme.

Indeed, this led us to develop the first synthesis of the CF2-phos-

phonate mimic of pSer, in a form suitable for automated peptide

synthesis, 15 years ago. Actually, both our first-generation and

second-generation synthesis, starting from L-serine and (R)-iso-

propylideneglycerol, respectively, were disclosed in that first

communication (Figures 1 and 2) (Berkowitz et al., 1994b). In

the following year, the groups of Otaka and Burke collaboratively

reported a complementary approach to the same target (Otaka

et al., 1995a). In what follows, these syntheses are organized
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Figure 1. PCF2-C Bond Formation via Triflate Displacement—
Stereocontrol via Chiron Approach from L-Serine
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according to PCF2-C bond disconnection, and they are pre-

sented along with several more recent approaches, to provide

the medicinal chemist with an overview of the routes available

to synthesize this ‘‘teflon pSer mimic.’’ This is followed by a

look at elegant studies, by the groups of Appella and Cole,

respectively, on using this pSer mimic to examine the role of

serine phosphorylation in signal transduction.

In Figure 1 is presented our first-generation approach to the

pCF2-Ser building block for peptide synthesis. A chiron

approach was taken, emanating from L-serine. As alluded to

earlier, an important observation had been made in our labora-

tory that informed our thinking about (a,a-difluoromethylene)-

phosphonate synthesis. Namely, in early work by Blackburn

and coworkers, it was observed that the LiCF2P(O)(OEt)2 anion

is unstable to a-elimination to difluorocarbene, at temperatures

of approximately�40�C or higher (Blackburn et al., 1987). There-

fore, we sought to develop especially efficient ways of capturing

this nucleophile, at low temperatures. Indeed, it was found

that displacements of primary sugar triflates generally proceed

at �78�C with this reagent, in a matter of minutes (Berkowitz

et al., 1993). This behavior contrasted sharply with the markedly

lower reactivity of alkyl halides.

In seeking to apply the triflate displacement approach to the

synthesis of the pSer mimic, we were confronted with an issue

of functional group cross-compatibility. Namely, would it be

possible to carry a masked amino group into the triflate scaffold

itself, so that the synthesis could commence with L-serine itself?

In fact, the challenge was much greater. Because of the densely

functionalized serine framework, the desired pCF2-Ser synthon

was to possess an a-triflyloxy, (protected)-b-amino substructure

(Figure 1). It was found that mono-protection of the amine, even

with strongly electron-withdrawing N-sulfonyl functionality, did

not lead to manageable triflates, perhaps because of neigh-

boring group participation (possible aziridinium ion formation).

Thus, bis-protection of the neighboring nitrogen, (i) as an acyclic

Bn-N-Ts group, (ii) through incorporation into a 2,5-dimethylpyr-

role group, or (iii) through cyclization to the oxazolidinone (as in

Figure 2), and N-benzylation, all led to primary triflates that
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were stable to chromatography and could be displaced by

LiCF2P(O)(OEt)2. However, in all cases, N-deprotection, in the

presence of the resultant fluorinated phosphonate, proved prob-

lematic. A solution was found with the latter protection scheme,

wherein the N-benzyl protecting group was replaced with a

much more labile N-TBS blocking group.

The N-protecting group problem that emerged in this first-

generation route resulted in a longer synthesis than envisioned,

that also suffered from suboptimal N-deprotection conditions.

Namely, introduction of the N-BOC functionality serves the

dual purpose of activating the oxazolidinone for ring opening

and installing a protecting group appropriate for peptide

synthesis. Unfortunately, that ring opening proceeds in modest

yield and limits the efficiency of this route. So, the phosphonate

team in the laboratory set about on a parallel route, in which

triflate displacement would still be employed for fluorinated

phosphonate installation, but on a glyceryl acetonide scaffold,

rather similar to the sugar scaffolds originally employed

(Berkowitz et al., 1993). This worked smoothly and allowed for

late introduction of nitrogen, via azide displacement upon

a secondary triflate (Figure 2). This remains a rather streamlined

and underused route into the pCF2-Ser target. Chemical biolo-

gists active in this field are encouraged to examine this isopropy-

lidineglycerol route, if in need of a clean rapid entry into this

phosphono-peptide building block.

Indeed, highlighting the practicality of this type of approach,

the efforts of a phosphonate group in Tokyo, under Shibuya

(Yokomatsu et al., 1996), resulted in a conceptually different

approach to stereocontrol, while retaining the same sort of

triflate displacement chemistry as had been employed in our

second-generation synthesis (Figure 3). Cleverly, Yokomatsu

et al. utilized the mono-acetonide of the C3v-symmetrical tris

(hydroxymethyl)methane (THYM) starting material as triflate

precursor. Triflate displacement proceeds smoothly. This is fol-

lowed by acetonide cleavage to produce a 1,3-diol that may

be efficiently desymmetrized with several lipases. Note that

enzymatic desymmetrization is, of course, an excellent strategy

for achieving both high ee and high throughput. The strategy is

exceedingly efficient here, and, in our own experience, can be

employed with advanced meso intermediates (Berkowitz et al.,

2000b; Berkowitz et al., 1996b), relatively deep into total

synthetic ventures, particularly with lipase enzymes. Second,

we have also found that lipase-mediated hydroxymethyl arm

acylation is a very effective strategy for chiral discrimination for

unnatural amino acids. This approach works, even for quater-

nary amino acid synthons, after reduction of the a-carboxyl to

a hydroxymethyl group (Berkowitz et al., 1994a).
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Also in this case, N-introduction occurs

late in the synthesis, but via Curtius

rearrangement, instead of triflate dis-

placement. The Tokyo route and our

second-generation triflate displacement

route also share the advantage of permit-

ting N-carbamate deprotection, in situ, though in different ways.

Interestingly, since the original Shibuya route was published,

studies by Guanti and coworkers (Banfi and Guanti, 1998;

Banf et al., 2005), in particular, have produced a number of

methods for tris(hydroxymethyl)methane desymmetrization.

So, one should be able to enter this triflate displacement route

with a single antipode of this type of THYM educt. The resulting

phosphonate would possess differentially protected hydroxy-

methyl arms, streamlining the Tokyo route even further.

All of the aforementioned triflate displacement-based chem-

istry was carried with diethyl protection across the fluorinated

phosphonate moiety, as this is the most well studied synthon.

It is worthy of note that we have developed complementary

fluorinated phosphonate reagents, carrying both dibenzyl (Ber-

kowitz et al., 1999) and diallyl (Berkowitz and Sloss, 1995) phos-

phonate protection. Both reagents have performed well in model

triflate displacement studies and may, in the future, allow for

adaptation of these routes to the synthesis of pCF2-Ser mono-

mers bearing more convenient side chain protecting groups.

Figure 4 highlights a route developed jointly by Kawamoto and

Campbell (1997) that features transition metal-mediated alkene

addition of (RO)2P(O)CH2ZnBr, similar to a reaction developed

by Burton, under both Pd and Cu-catalysis (Yang and Burton,

1992). More recently, related transformations have been devel-

oped in the thiono series by Piettre and colleagues (Lequeux

et al., 2001; Pignard et al., 2006). These latter reactions do not

require transition metal catalysis and are routinely run under

radical chain conditions. Following (RO)2P(O)CF2-radical addi-

tion to a-bromoacrylate, nitrogen is introduced late via bromide

displacement. Stereocontrol comes still later, through a classical

resolution, via chromatographic separation of the diastereo-

meric bornyl esters.

Lastly, the original Otaka route (Figure 5) features a third

method of fashioning the PCF2-C linkage, namely via (RO)2
P(O)CF2Li addition to carbonyl centers (Otaka et al., 1995a;

Otaka et al., 1995b). Specifically, the Kyoto group utilizes the

Garner aldehyde (Garner and Park, 1992) and employs a carbonyl

addition/Barton ester-type deoxygenation sequence, similar to

that described by Martin and coworkers, in non-AA contexts

(Martin et al., 1992). Our own carbonyl addition route (Berkowitz

et al., 1996a) utilizes the Garner ester as electrophile and, by

design, allows the experimentalist to assess three different

L-(a,a-difluoromethylene)phosphono AAs, the analogs of pSer,

p-allo-Thr, and pThr, from a common, b-keto-a,a-difluoro-

phosphonate intermediate, by treatment either with LiBH4 or

with MeMgBr, prior to deoxygenation. As can be seen in Figure 5,

if one only wishes to synthesize the pCF2-Ser mimic, the two

930 Chemistry & Biology 16, September 25, 2009 ª2009 Elsevier Ltd All rights reserved
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routes are very similar (Corey-Schmidt [PDC-DMF] oxidation

versus RuO4 in final step). Because of the ready accessibility of

the Garner ester, this route appears to be the most widely

used. The fact that it also provides access to the individual

L-phosphonothreonine diastereomers makes this a versatile

approach.

Use of the pCF2-Ser Mimic as a Tool for the Study
of Signal Transduction
The p53 protein is a tightly regulated tumor suppressor protein

(Sherr, 2004), mutated in 50% of human cancers (Bykov et al.,

2002; Toledo and Wahl, 2006). The p53 protein, when activated,

dissociates from its mdm2 (hdm2 is the human equivalent)

binding partner, undergoes conformational change, and acts as

a transcription factor, typically leading to either cell cycle arrest

or apoptosis (Liebermann et al., 2007). Both appear to be

protection mechanisms, especially with the finding that tumor

senescence may be associated with inflammatory cytokine

up-regulation and tumor clearance (Xue et al., 2007). Activation

of p53 occurs in response to cellular stress signals, including

DNA damage, osmotic shock (Kishi et al., 2001), oxidative stress

(Han et al., 2008), and hyperglycemia. Conversion of the latent

form of p53 to its active transcription factor form appears to

involve initial phosphorylation (primarily at N-terminal serines)

and subsequent acetylation (C-terminal lysines- K320 and K382).

Several experiments underscore the importance of under-

standing p53 function and regulation, especially for medicinal

chemistry programs in the oncology (Bell and Ryan, 2007; Haupt

and Haupt, 2006; Vassilev, 2005) and diabetes areas (Fiordaliso

et al., 2001). Jacks and coworkers developed a clever genetic

construct for temporal control of p53 expression (Ventura

et al., 2007). Initially, p53 was held genetically latent and could

be restored via a Cre recombinase mechanism. Restoration of

p53 function was shown to lead to tumor regression, with the

effect dependent on tumor type. This work pointed to the impor-

tance of altered p53 function in tumorigenesis and tumor main-
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tenance. This genetic system, then, serves as a model for phar-

macological reactivation of p53. Indeed, along those lines,

a couple of interesting early small molecule modulation experi-

ments have come to the fore. For example, small molecules

capable of both restoring transcriptional activation function to

p53 mutants (Bykov et al., 2002) and of inhibiting p53-mdm2

interactions (Vassilev et al., 2004) have been described, each

avenue representing a fundamentally new approach to cancer

chemotherapy, if viable.

Given the prevalence of p53 abnormalities in cancer and the

importance of serine phosphorylation in its regulation, there

has been a very high level of interest in the study of kinase-regu-

lated signal transduction in this system. Among the candidate

sites for p53 modulation, via phosphorylation, are included

S-6, S-9, S-15, T-18, S-20, S-33, S-37, and S-46 at the

N-terminus, as well as S-315 and S-392 at the C terminus.

In terms of regulatory complexity, at the level of serine phosphor-

ylation, this system, then, is reminiscent of the glycogen

phosphorylase/glycogen synthase pair discussed earlier. Inter-

estingly, at the C terminus of p53, O-glycosylation may be in

direct competition with O-phosphorylation (Clarke et al., 2008;

Haltiwanger et al., 1997; Hart et al., 1995; Wells et al., 2003),

with the former being particularly important in cases of hypergly-

cemia (Fiordaliso et al., 2001).

From a chemical biology point of view, one way of examining

the effects of posttranslational modifications, is to engineer

functional variants that model both the ‘‘switched on’’ and

‘‘switched off’’ states of the macromolecule. Although it is easy

to genetically engineer ‘‘constitutively dephosphorylated’’ sites

by mutating phosphorylation site Ser residues to Ala residues,

and this has been shown to be quite effective in the p53 system

(Yamauchi et al., 2004), the reverse mutation is unavailable by

standard molecular biological techniques, because Asp or Glu

are often unsuitable mimics of pSer (Zheng et al., 2003), and

there are no better choices available among the proteinogenic

AAs. The incorporation of a phosphatase-inert pSer mimic
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position-specifically into a protein of interest is now possible with

expressed protein ligation (EPL) techniques. Moreover, in such

endeavors, it appears to be especially advantageous to use

phosphono-AA mimics in which a CF2 (as opposed to a CH2)

replaces the bridging ester oxygen (Zhang et al., 2003). Among

the possible reasons for this advantage is the aforementioned

‘‘isopolarity’’ of the CF2 unit with the native bridging O. However,

pKa effects may be even more important. The simple CH2-phos-

phono analog of pSer is expected to have pKa2 of 7–8, whereas

its CF2-phosphono counterpart typically displays pKa2 under 6,

depending upon molecular context (Berkowitz and Bose, 2001;

Berkowitz et al., 2000a; Blackburn et al., 1984). Thus, both the

native pSer residue and the pCF2-Ser mimic will present as

almost exclusively dianionic side chain modifications under

most conditions. This ability to bring in such a chemically tuned,

hydrolytically stable, pSer mimic, using EPL techniques, will be

discussed below, in the context of recent studies of melatonin

regulation.

In the p53 area, the most common modus operandi for

studying site-specific phosphorylation itself—that is, for running

‘‘phosphorylation-positive’’ experiments—is a reactive one,

rather than a proactive one. That is to say, rather than effectively

generate ‘‘constitutive’’ pSer sites in p53 and examine functional

responses to these, one looks at the pSer profile of p53 in

response to a stimulus. The analytical tools needed for such

studies are a set of antibodies (Abs) for site-specific phosphory-

lation variants of p53. For p53, activation usually involves

serine phosphorylation, with sites available at both the N- and

C-terminal regions.

A precedent-setting study in antibody-based mapping tech-

nology was carried out by Appella and coworkers at the NIH

(Higashimoto et al., 2001; Higashimoto et al., 2000) (Figure 6).

The group sought to specifically examine phosphorylation at

Ser-6 and Ser-9 in p53, in response to DNA damage. It was

found that one could successfully raise Abs against pSer-9-

containing peptide-KLH-protein conjugate and that these

Abs, in turn, effectively recognized p53 protein that was specif-

ically phosphorylated at Ser-9. However, the same procedure

for producing pSer-6-complementary Abs failed. Abs were

obtained, but these recognized only p53 samples presenting

an unphosphorylated Ser-6-site. It appears that the peptidyl-

KLH conjugate suffered phosphatase-mediated Ser-6-O-phos-

phate cleavage in the rabbit immunization step.

Appella’s team astutely recognized that the use of an ‘‘isosteric

and isopolar’’ (Blackburn et al., 1985b; Blackburn et al., 1981), yet

hydrolytically stable, pSer mimic might overcome this, otherwise

apparently insurmountable, barrier. As is depicted in the Figure 6,

the pCF2-Ser mimic, indeed, served this purpose exceptionally

well, producing high titers of Ab that recognized only pSer-6-

posttranslationally modified (PTM) p53 samples. This experiment

demonstrates, at once, the utility of this phosphoserine mimic

for overcoming phosphatase cleavage and its ability to quite

accurately mimic the size, polarity, and charge distribution of

the native PTM. After all, the raised Ab was ‘‘remodeled’’ against

the pSer surrogate and deployed against actual, pSer-modified

p53, and showed complete fidelity in recognizing the true

functionality.

Using this chemical biological tool, the Appella group was able

to establish that Ser-6 is phosphorylated in response to DNA
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damage induced by both UV light and ionizing radiation (Higashi-

moto et al., 2000). In subsequent studies, an unexpected

interdependence was seen between Ser-6 and Ser-9 phosphor-

ylation (Saito et al., 2003). That is, in the absence of Ser-9 (S9A

mutant), no phosphorylation is seen at Ser-6, and vice versa.

This work established that the N-terminal transactivation domain

of p53 appears to be divisible into four clusters of interdependent

serine residues, from the point of view of phosphorylation. This

site interdependency model is seen as a mechanism for both

control and signal amplification.

As alluded to in the previous discussion, it would be even more

powerful if one could generate phosphorylation ‘‘knock-in’’

mutants to complement the phosphorylation ‘‘knock-out’’

mutants typically constructed by Ser to Ala mutations. This

would allow one to go beyond analyzing phosphorylation

patterns that are generated by native kinases. Rather, one would

be generating artificially a ‘‘constitutive phosphorylation signal’’

and examining the downstream consequences of that signal

transduction event.

In Figure 7 is illustrated a seminal study by the group of Philip

Cole at Johns Hopkins that uses the power of EPL to surgically

insert the pCF2-Ser mimic of pSer into a protein, at a site of

interest (Zheng et al., 2005). The EPL technique (Muir et al.,

1998; Schwarzer and Cole, 2005) involves coupling intein tech-

nology to cysteine ligation methodology inherent in the parent

native chemical ligation procedure (Dawson et al., 1994). EPL

may be regarded as the state of the art for chemical biological

manipulation of side chain functionality, and is especially useful

for studying PTMs and their relation to signal transduction

(Flavell and Muir, 2009; Pickin et al., 2008; Rauh and Waldmann,

2007).

In the case at hand, Cole and co-workers were interested in

examining closely the regulation of arylalkylamine N-acetyltrans-

ferase (AANAT), an enzyme that catalyzes the penultimate step

in the biosynthesis of the time-keeping hormone, melatonin

(Klein, 2007). Melatonin, N-acetyl-50-methoxytryptamine, is bio-

synthesized by the decarboxylation of 50-hydroxytryptophan to

serotonin, followed by N-acylation and O-methylation. It is the

N-acylation step that is mediated by AANAT, with acetyl-CoA
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serving as acyl donor. It had been surmised that phosphorylation

at Thr-31, and potentially Ser-205, modulated in vivo acyltrans-

ferase activity. Two mechanisms for this effect were in play: (i)

improving the catalytic efficiency for the acyl transfer reaction

and (ii) increasing the biological half-life of AANAT enzyme.

The mechanism for AANAT stabilization is an interesting one—

namely, the protein is thought to be shielded from proteosomal

proteolysis by association with a specific14-3-3 adaptor protein,

the zeta-variant. Over 100 signaling proteins have been reported

to bind to 14-3-3 proteins, and these interactions are typically

associated with pSer or pThr modifications on the signaling

protein (Klein et al., 2003; Obsil et al., 2001; Tzivion and Avruch,

2002). In the case at hand, in the dark, AANAT activity and

protein levels increase. The putative activating phosphorylations

are thought to be mediated by protein kinase A, in response to

elevated cAMP levels, in the pineal gland, as a result of a1 or

b-adrenergic receptor activation. Thus, through EPL with the title

pSer mimic, the Cole group sought to engineer in ‘‘constitutive

phosphorylation’’ at position-205 and to test for positive interac-

tion between AANAT and its 14-3-3-zeta partner.

In the Hopkins experiment, the requisite octapeptide for EPL

was synthesized by standard solid phase peptide synthesis

(SPPS). The sequence represents a modified C terminus, in that

the Ser residue normally at position 205 was replaced by the

pCF2-Ser mimic, and a Cys residue was installed in place of

the native Ala-200, to enable the cysteine-mediated acyl transfer

chemistry that underlies the ligation chemistry in EPL. On the

other end, the AANAT protein itself was expressed as a comple-

mentary C-terminal (8-) truncated-intein-CBD (chitin-binding

domain) fusion construct. The CBD allowed for facile purification

via affinity chromatography. The tag could then be clipped by

trans-thio-esterification with b-mercaptoethanesulfonate, setting

the stage for ligation. Incubation of the synthetic, N-Cys-termi-

nated, (a,a,-difluoromethylene)phosphono-peptide proceeded

cleanly, presumably via the usual two stage, intermolecular

trans-thio-esterification/intramolecular S-N acyl transfer mecha-

nism, providing the targeted semisynthetic protein (Figure 7).
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Using this construct, the Cole group was able to

demonstrate clearly that Ser-205 phosphorylation,

though at the C terminus and not a part of a recog-

nized 14-3-3-zeta consensus sequence, enhances

cellular stability of the AANAT protein. Subsequent

studies showed that this effect persists in live cells,

expanding the domain in which such ‘‘teflon phos-

phates’’ may be deployed to ask fundamental

questions in chemical biology (Zheng et al., 2005;

Szewczuk et al., 2008). Interestingly, from this latter

study, it was confirmed that, surprisingly, Ser-205

phosphorylation on AANAT confers a greater

binding affinity for 14-3-3-zeta (0.86 mM Kd) than

does Thr-31 phosphorylation (1.8 mM Kd). On the

other hand, the latter PTM alone improves the cata-

lytic efficiency (kcat/Km) of the acyl transferase by

approximately seven fold, largely by decreasing the Km for sero-

tonin. However, that catalytic improvement is essentially lost

when both modifications are present. These observations,

when taken together, are consistent with a two-point (N-terminal

pThr and C-terminal pSer) binding model for the interactions

between AANAT and its 14-3-3-zeta partner. So, in the end,

both mechanisms postulated for increased AANAT activity,

improved catalytic efficiency (seen with sole pThr-31 modifica-

tion), and increased stability to proteolysis through binding

to 14-3-3-zeta (seen with sole pSer-205 phosphorylation and

with pThr-31/pSer-205 dual phosphorylation), appear to be

operative.

Conclusions
The (a,a-difluoro)methylene phosphonate analog of L-phospho-

serine isavailable through chemistryemploying a M-CF2P(O)(OR)2
equivalent for PCF2-C bond formation via (i) triflate displace-

ment, (ii) carbonyl addition/reduction, or (iii) Cu-mediated alkene

addition. Within these approaches, absolute stereochemistry is

controlled by (i) starting from an appropriate chiral synthon-L-

serine, D-serine, or (R)-isopropylideneglycerol; (ii) utilizing a chiral

catalyst (lipase P) to desymmetrize an achiral intermediate; or (iii)

attaching a covalent chiral auxiliary for enantiomer resolution.

The pCF2-Ser mimic may be incorporated into peptides utilizing

SPPS, either for purposes of raising antibodies to specific pSer

modifications, or for installation a ‘‘constitutive pCF2-Ser modifi-

cation’’ into the native protein itself, using EPL methods. The

former application was used to firmly establish a connection

between p53 Ser-6 phosphorylation and DNA damage, and the

latter clarified the role of Ser-205 phosphorylation of AANAT

enzyme stabilization.

This technology adds an important element into the toolbox

available to the chemical biologist interested in studying sig-

nal transduction. Fundamental mechanistic questions relating

to kinase-mediated signal transduction in tumor suppression,

and in diurnal regulation of the time-keeping hormone, mela-

tonin, have been addressed. As the aforementioned studies
Chemistry & Biology 16, September 25, 2009 ª2009 Elsevier Ltd All rights reserved 933
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demonstrate, fluorinated phosphonate analogs of phospho-

amino acids provide for metabolically stable alternatives to the

native phospho-proteins, while retaining the ability to promote

protein-protein interactions that depend on that phosphoryla-

tion. This makes these unnatural amino acid analogs invaluable

tools for the dissection of such signal transduction pathways.

With the maturation of semisynthetic hapten construction,

expressed protein ligation and unnatural amino acid mutagen-

esis (Liu and Schultz, 1999; Xie and Schultz, 2005, 2006), and

the importance of kinase-mapping in the present day, the time

is ripe for expanded use of this isopolar phosphoserine mimic

in chemical biology.
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